

SAT/ACT MATH Formula Sheet

Tutela Education Private Limited, 2020 www.TutelaPrep.com | Unauthorized reuse of any part of this page is illegal.

<u>Algebra</u>

1.Order of operation PEMDAS: -

(Parentheses \rightarrow exponents \rightarrow Multiply \rightarrow divide \rightarrow add \rightarrow subtract).

2.Factoring & solving: -

 $(x + a) (x + b) = x^{2} + (a + b) \times + ab$ $a^{2} - b^{2} = (a + b) (a - b)$ $(a \pm b)^{2} = a^{2} + b^{2} \pm 2ab$

3.Percentages: -

 $Part = \frac{percent}{100} \times whole$ $Percentage \ change = \frac{new-old}{old} \times 100\%$

<u>4.Rate: -</u>

Speed = $\frac{Distance}{time}$ (Frequently used formula in rate)

5.Exponents & radicals: -

 $x^{a} \cdot x^{b} = x^{a+b}$ $(x^{a})^{b} = x^{ab}$ $x^{a}/x^{b} = x^{a-b}$ $(xy)^{a} = x^{a} \cdot y^{a}$ $1/x^{a} = x \cdot a$ $\sqrt[a]{xy} = \sqrt[a]{x} \sqrt[a]{y}$ $x^{a} = y \rightarrow x = y^{1/a}$

$$(-1)^n = \{+1 \text{ if } n \text{ is even } -1 \text{ if } n \text{ is odd} \}$$

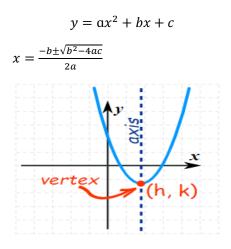
6.Arithmetic Sequence: -

 n^{th} term = a_n = a+(n-1)d Sum of n term = $S_n = \frac{n}{2}(2a+(n-1)d)$ Where a = first term, d= common difference

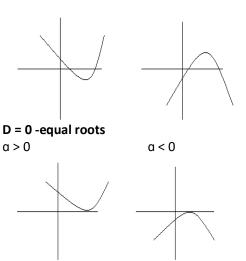
7.Geometric Sequence: -

 n^{th} term = a_n = a $\cdot r^{n-1}$ Sum of n term = $S_n = \frac{a(r^n-1)}{r-1}$ Where a = first term, r= common ratio

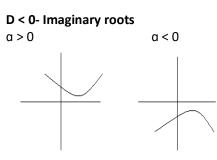
8.Numbers: -


same)

Sum of consecutive integers from 1 to n = $\frac{n(n+1)}{2}$ $\frac{a}{b}$ is undefined when denominator (b) = 0


as a increases, $\frac{a}{b}$ also increases (keeping b

as b increases, $\frac{a}{b}$ decreases (keeping a same) if $\frac{a}{b} = \frac{c}{d} \rightarrow ad = bc$ (cross multiplication)


9.Quadratic equations: -

Sum of roots = $\frac{-b}{a}$ Product of roots = $\frac{c}{a}$ $h = \frac{-b}{2a}$ = average of two roots D = Discriminant = $b^2 - 4ac$

Tutela Education Private Limited, 2020 www.TutelaPrep.com | Unauthorized reuse of any part of this page is illegal.

Vertex form for
$$y = ax^2 + bx + c$$

 $y = a(x - h)^2 + k$

12.Functions: -

y = f(x)

 $f: x \rightarrow y$

Input (x) f(x) utput (y)

Set of all possible inputs is Domain

Set of all possible outputs is Range

<u>Transformation of function - y = f(x)</u>

	Nature	Change
f(x)+a	a > 0	Moves vertically (↑) up
f(x)+a	a < 0	Moves vertically (\downarrow) down
	a > 0	Moves left (←)
f(x+a)	a < 0	Moves right (\rightarrow)
f(x+a)	a > 0	Vertical dilation by scale a
af(x)	a > 0	Horizontal dilation by scale a
f(ax)	-	Reflection about x - axis
- <i>f</i> (x)	_	Refelection about y-axis
<i>f</i> (-x)	-	Reflection of negative 'y' part about
$ f(\mathbf{x}) $		x - axis

13.Complex numbers: -

$$i = \sqrt{-1}$$

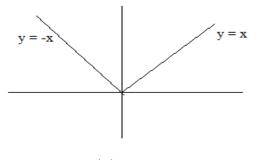
 $i^2 = 1$
 $i^3 = -1$
 $i^4 = 1$
 $\alpha \pm bi$ are conjugate pairs

14.Logarithms: -

 $log_a x$ = n is equivalent to $a^n = x$

$$log_a x + log_a y = log_a xy$$
$$log_a x - log_a y = log_a \frac{x}{y}$$

$$log_a x = \frac{log_c x}{log_c a}$$

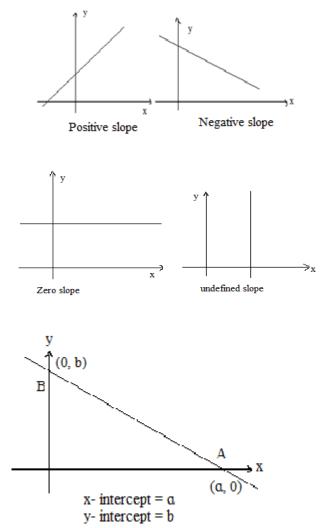

10.Linear inequalities: -

a < x < b $a \pm c < x \pm c < b \pm c$ ac < (x)(c) < bc (of c > 0) bc < (x)(c) < ac (if c < 0) $a > b \rightarrow \frac{1}{a} < \frac{1}{b}$

11.Absolute Value: -

- If |x| = 5, then x = 5 or -5
- If |x| > 5, then x > 5 or x < -5
- If |x| < 5, then -5 < x < 5
- If |x| = a (a < 0), then no solution for x

$$y = |x| = \{x, if x \ge 0, -x if x < 0\}$$



Tutela Education Private Limited, 2020 <u>www.TutelaPrep.com</u> | Unauthorized reuse of any part of this page is illegal.

15. Growth and Decay: -

General form – A = P $(1 \pm r)^t$ Exponential form – A = P a^{rt} Compounding form – A = P $(1 \pm \frac{r}{n})^{nt}$

Statistics and probability: -

Mean = $\frac{sum of terms}{Number of terms(n)}$ Mode – Most frequent term Median – Middle value in the list If n is odd → Median is $(\frac{n+1}{2})^{th}$ value If n is even → Median is average of

value at
$$(\frac{n^{th}}{2})$$
 and $(\frac{n}{2}+1)^{th}$ position.

Probability = <u>number of desired outcome</u> <u>number of total outcome</u> P (A and) = P(A) • P(B) if events A and B are independent P (A or B) = P(A) + P(B) - P (A & B) Conditional probability: P (A | B) = $\frac{P(A \& B)}{P(B)}$

Permutation and Combination: -

Counting principle – N ways for event A M ways for event B Then NXM ways for event A and B together number of permutations of n things taken r at a time is P (n, r) = $\frac{n!}{(n-1)!}$ Number of combinations of n things taken r at a time is C (n, r) = $\frac{n!}{(n-r)! \cdot r!}$

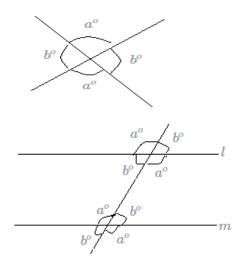
Coordinate Geometry: -

A
$$(x_1, y_1)$$
 and (x_2, y_2)
Distance AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Mid-point of AB = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
Slope of line AB(m) = $\frac{y_2 - y_1}{x_2 - x_1}$

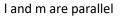
Line equation: -

Point slope form $(y-y_1) = m(x-x_1)$ Slope intercept form y = mx + c(c = y- intercept)For parallel lines: $m_1 = m_2$ (equal slopes) For perpendicular lines: $m_1 \times m_2 = -1$

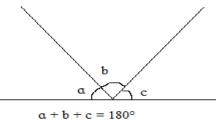
System of
equations: -


$$a_1x + b_1y =$$

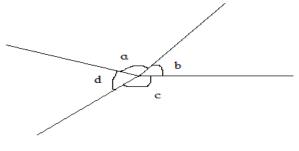
 c_1
 $a_2x + b_2y = c_2$


 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \rightarrow \text{No solution}$ $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \rightarrow \text{Infinite solutions}$

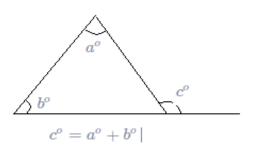
Tutela Education Private Limited, 2020 www.TutelaPrep.com | Unauthorized reuse of any part of this page is illegal.


Geometry: -

1. Angles

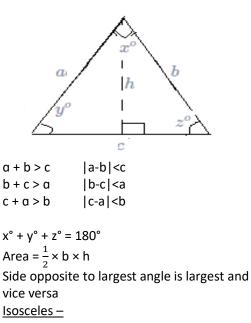


sum of any number of angles forming a straight line is 180°

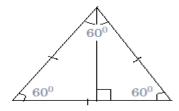

$$+b+c = 180$$

Sum of any number of angles around a point is 360°

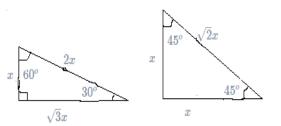
 $a + b + c + d = 360^{\circ}$

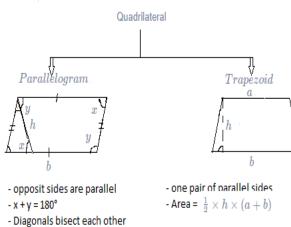

If $\angle a + \angle b = 90^\circ$, then a and b complementary angles. If $\angle a + \angle b = 180^\circ$, then a and b are supplementary angles.

2. Polygon (n = number of sides): -

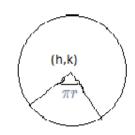

Sum of all interior angles = 180°(n-2) Sum of all exterior angles= 360°

Triangles: -

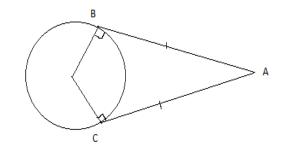



Equilateral -

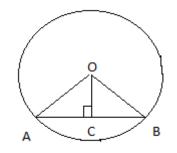
Right angle-



Pythagoras theorem- $a^2+b^2=c^2$ (Where, c is hypotenuse) Pythagorean triplets-(3,4,5),(12,5,13),(6,8,10)


- Area = $base(b) \times height(h)$

3.Circle: -



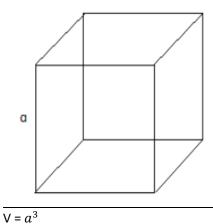
Area = πr^2 Circumference = 2π r Length of arc = $\left(\frac{n^{\circ}}{360^{\circ}}\right) 2\pi$ r

Area of sector =
$$\left(\frac{n^{\circ}}{360^{\circ}}\right) \times \pi r^2$$

AB = AC Tangent and radius are at right angle.

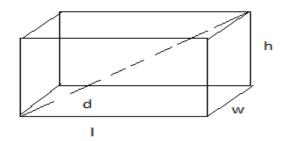
AC = BC AB is chord Equation of circle- $(x - h)^2 + (y - k)^2 = r^2$ Radian = degree × $\left(\frac{\pi}{180^\circ}\right)$

Parallelogram ų Ŷ Ŷ Rectangle Square Rhombus aa- All sides are equal - Area = a^2 - Diagonals bisect each other at - AC = BD - Area $= b \times h$ right angle

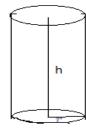

- Area = $\frac{1}{2} \times (d1) \times (d2)$ d1 and d2 are length of

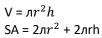
diagonls

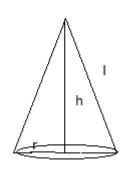
Right Circular cone


4.Solid figure: -

<u>Cube</u>

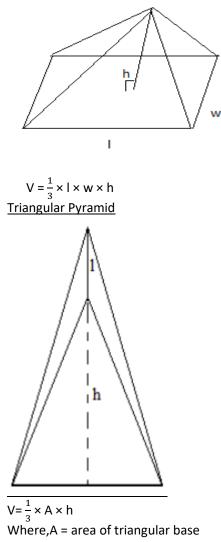


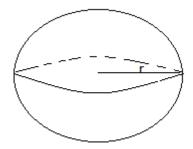

Rectangular box

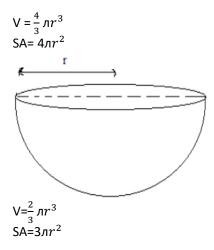


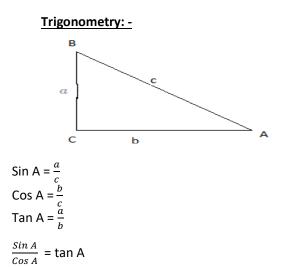
 $V = I \times w \times h$ $\mathsf{d} = \sqrt{l^2 + w^2 + h^2}$ surface area (SA) = 2(lw + wh + hl)

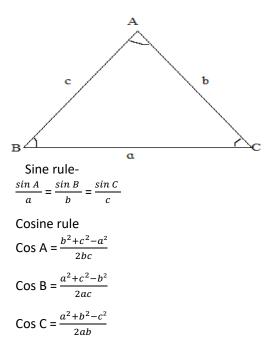
Right circular cylinder

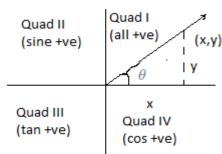



V =
$$\frac{1}{2}$$
л r^2h


Pyramid with rectangular base


Tutela Education Private Limited, 2020 <u>www.TutelaPrep.com</u> | Unauthorized reuse of any part of this page is illegal.


<u>Sphere</u>


Tutela Education Private Limited, 2020 <u>www.TutelaPrep.com</u> | Unauthorized reuse of any part of this page is illegal.

Sin A = Cos (90 – A) =CosB

Sin
$$\theta = \frac{y}{r}$$

Cos $\theta = \frac{x}{r}$
Tan $\theta = \frac{y}{x}$
Sin (x ±360°) = sin x
Cos (x ±360°) = cos x
Tan (x ±360°) = tan x
Csc $\theta = \frac{1}{\sin \theta}$
Sec $\theta = \frac{1}{\cos \theta}$
Cot $\theta = \frac{1}{\tan \theta}$

 $\frac{\text{Identities}}{\text{Sin}^2\theta + \text{Cos}^2\theta = 1}$ $1 + \tan^2\theta = \sec^2\theta$ $1 + \cot^2\theta = \csc^2\theta$